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When we think of audio data, we think of music and speech. However, the set of various kinds of audio data, 
contains a vast multitude of different sounds. Human brain can identify sounds such as two vehicles crashing 
against each other, someone crying or a bomb explosion. When we hear such sounds, we can identify the source 
of the sound and the event that caused them. We can build artificial systems which can detect acoustic events just 
like humans. Acoustic event detection (AED) is a technology which is used to detect acoustic events. Not only can 
we detect the acoustic event but also, determine the time duration and the exact time of occurrence of any event. 
This paper aims to make use of convolutional neural networks in classifying environmental sounds which are linked 
to certain acoustic events. Classification and detection of acoustic events has numerous real-world applications 
such as anomaly detection in industrial instruments and machinery, smart home systems, security applications, 
tagging audio data and in creating systems to aid the hearing-impaired individuals. While environmental sounds 
can encompass a large variety of sounds, we will focus specifically on certain urban sounds in our study and make 
use of convolutional neural networks (CNNs) which have traditionally been used to classify image data, for our 
analysis on audio data. The model, when given a sample audio file must be able to assign a classification label 
and a corresponding accuracy score. 
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We can easily identify an event or a setting by looking at an image. Various objects within an image describe an 
event or a setting. Similarly, various sounds can describe an acoustic event. Residential, indoor or industrial 
settings can be defined by a set of various audio signals. Sound detection and classification using deep neural 
networks [1] and effectiveness of CNNs for large scale audio classification [2] has already been established. 
However, acoustic scenes constitute a vast multitude of overlapping sounds which must be separated and 
classified for us to be able to identify the acoustic event. These systems can be used in military applications for 
threat monitoring and situational awareness. Surveillance systems often rely on video-based camera systems 
which are vulnerable to bad weather and low light conditions. Acoustic event detection systems can be used in 
conjunction with the pre-existing defense and surveillance systems to boost their capabilities. They can also be 
used in industrial settings to identify defects in equipment and machinery. Furthermore, these systems are 
economical and more cost effective when compared to video-based systems and thus can be installed almost 
everywhere.   
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Figure.1 displays the flow diagram of the implementation methodology. The system takes random urban sounds 
as input, transforms the audio signals and extract certain features on basis of which the random sounds are 
classified. Figure 2 shows how a time domain input audio is transformed into a frequency domain signal and then 
assigned an output label based on the extracted features.  
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The dataset we used for urban sound detection is the Urban-Sound8k dataset which comprises of 8732 sound 
clips from field recording of duration <= 4 seconds each, in length and a varying sampling rate of 16kHz to 44:1kHz.  
All the excerpts in the dataset have been taken from field recordings uploaded to www.freesound.org while the 
classes are drawn from urban sound taxonomy [3]. The Urban-Sound8k dataset has 10 classes of urban sounds 
clips. Class IDs and number of samples for each class are shown in table 1.  
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Figure 3 shows the time domain waveforms associated with each of the 10 classes. 
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From visual inspection of time domain representations of the audio signals, we can see that it is quite difficult to 
ascertain the difference between some of the classes. Especially, the waveforms for repetitive sounds such as air 
conditioner, drilling, engine idling and jackhammer are similar in shape. It is possible to train a classification model 
using samples of amplitude values that approximate the signal in time domain, however, as a rule of thumb, models 
based on frequency domain features tend to outperform those based on time domain features, on audio 
classification tasks. We thus need to convert the time domain audio signals into a log scaled spectrogram so that 
we can identify various audio classes by analyzing the power spectral density of various frequency components in 
each audio file. Figure 4 shows the log scaled spectrograms of each of the 10 classes.  
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The bright yellow color indicates higher magnitude and darker green color is indicative of lower magnitude. The 
data from the spectrograms of all the audio files in the input dataset can be converted to a numerical array or tensor 
which can then be fed to a convolutional neural network to train the model. 
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Audio data for preprocessing is obtained by sampling the analog audio signal at different time intervals and 
assigning the amplitude value to each sample. Sampling rate is defined as the number of samples per second of 
audio data. Thus, each audio sample is stored as a time series of numbers, where each value represents the 
amplitude. There was a wide variation in the Sample rates of various audio samples in our dataset, ranging from 
96k to 8k. The bit depth determines how many possible amplitude values a given sample can take. A bit-depth of 
16 which implies that each sample could take on ! !"or 65536 values. Most of the audio samples in the dataset had 
two audio channels (stereo) while a few audio samples had just one channel (mono). The bit-depth also varied 
between audio samples ranging from 4bit to 32 bits. We set the sampling rate to 22.5k and bit depth to 16 bits for 
all audio files, thus normalizing the data for further analysis. We used a sampling rate of 22,500 samples per 
second. Thus, one second of audio was represented as an array of 22,500 numbers.  
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Fourier transform provides an elegant method to represent a complex audio signal as a sum of sinusoids of 
various frequencies. However, valuable information about the time variation of signals is lost after applying a 
Fourier transform. STFT (Short Time Fourier Transform) makes use of a short time domain window that slides 
along the time domain and performs a FFT (fast fourier transform) of each segment, thereby giving us a 
frequency domain representation, while preserving the information about time domain variations of the audio 
signal. Humans perceive sound logarithmically and not linearly at higher frequencies. Thus, humans can easily 
differentiate between 100 Hz and 200 Hz signals as opposed to 1000 Hz and 1100 Hz signals.  

 
To approximate our signal representation to match human perception of audio signals, we make use of Mel 
scale.  A Mel Spectrogram plots the signal in terms of Mel Scale instead of Frequency scale, on the y-axis. 
Colors vary as per the logarithmic Decibel Scale instead of linear Amplitude Scale. For deep learning models, 
Mel spectrograms generally outperform Spectrograms.  
 
The Mel-Frequency Cepstral Coefficients (MFCC) has been a popular feature extraction technique in recent 
years [4]. The development of MFCC was inspired by the way humans perceive audio data. It differs from other 
cepstral features in the frequency bands which are on the mel-scale. 



Mel Scale is a non-linear representation of audio signals where frequency is represented as m mels, 
defined as:  
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Mel frequency is F is defined as follows: 
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Here, f represents the frequency in Hz and F represents non-linear Mel-frequency. MFCCs can be 

obtained using the formula: 
 

9:;; $# < )!%
&'! )&'( !#=&5/)

$(&)!"*)
#

,#
556. . . )>5 

 
Here, m takes on values from 1 to N, where N is the number of Mel cepstral coefficients and =& 

represents the energy emitted by the ?th filter [5]. 
 

D>J! 5"2"!7F"990@07"2041!6901E!711 !

CNN based models are being used for a variety of tasks from Audio Generation, Music Genre Classification to 
Environment Sound Classification in many studies. The ability of capturing patterns of time and frequency makes 
deep convolutional neural networks (CNNs) well suited for image and sound classifications models. When CNNs 
applied spectrograms shown to be very important distinguishing between noises and the actual sounds that we 
want such as car horn and sirens. The networks can successfully learn and identify Spectro-temporal patterns by 
using convolutional filters with small receptive fields, even the sound is masked by noises. Deep neural networks 
have a limitation, they are as good as the data we feed into them, they are dependent on large quantities of labelled 
training data to learn classification on untrained data. While new datasets are becoming available in recent years, 
the UrbanSound8k dataset is relatively low for research in sound classification. Data augmentation [6] is an 
effective solution to this problem, applying deformations to available training data without changing the semantic 
meaning of labels results in new additional training samples. For example, in computer vision scaled, translated, 
rotated, and mirrored images create new sets of data and would still be coherent images. However, the application 
of data augmentation in case of environmental sound classification is relatively limited, simple sound augmentation 
techniques like time stretching, time shifting, and pitch shifting have proven to be unsatisfactory in increasing model 
accuracy and decreasing training time. We use sound data augmentation to overcome the data scarcity problem 
and helps us to explore different types of sound deformations, data augmentation in combination with CNN provides 
increased performance for urban sound classification.  

 
Each audio sample of duration 4 secs was divided into 4*22500 or 90,000 samples. Hamming window size of 2048 
and hop length of 512 was used in the audio preprocessing stage. Each audio sample was further divided into 4 
segments, to increase the size of training data. Samples with length less than 1 seconds were discarded. The total 
number of inputs were increased from 8,732 to 29,300 audio samples of 1 sec duration each. Thus, we had 22500 
samples for each audio signal. The frequency domain transformations are applied not on the entire time duration 
of the audio signal (1 second), but on a small chunk of the audio whose length is equal to the hop length. Thus, we 
had 22500/512 or 44 segments for each second of every audio signal on which we apply frequency domain 
transformation. Using MFCCs we were able to extract 13 features for each of the 44 segments per second in the 
audio signal. The data was normalized between 0 and 1 as MFCC’s are susceptible to noise. The shape of each 
input sample of 1 sec duration was now fixed to (44, 13). Since, convolutional neural networks are traditionally 
used for image data, a new axis was added to mimic 3 dimensional RGB image data. The new shape of each audio 
sample was set to (44,13,1). 29,300 sample were further divided into train, validation and test sets. 20 percent of 
the sample were reserved for the test set while 25 percent of the remaining samples were reserved as validation 
set. Therefore, we had 17,580 audio samples in the training set. 

 
 
Figure 5. shows the architecture of the convolutional neural network used to train the model. The model had 3 
Conv2d layers,3 MaxPooling2d and 3 batch normalization layers one after another in sequence. The output was 
flattened thereafter and fed to a dense layer before the dense output layer. 
 
!"#$%&'()*"+,-"#,(./ Batch normalization layer was added after each Conv2D and MaxPooling layer to stabilize 
the inputs and improve the learning rates. 
 
0$#,1"#,(. There were a total of 5 activation functions one for each of the three conv2d, one for dense layers after 
the succession of 3 conv2d and max pooling layers, and 1 for the output layer were used out of which 4 were Relu 
and 1 was SoftMax. 
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2)(3(4# Random dropout of a certain percentage of neurons during the training process is a regularization 
technique that is used to avoid overfitting [7]. We used a dropout rate of 0.3 for our dropout layer. 

 
5"6&7((+,.8 Max Pooling is a dimensionality reduction technique and reduces the number of computations during 
the training stage. We used max pooling layer thrice, immediately after conv2d layer each time. The size of kernels 
used was (3,3) and (2,2). The stride size was (2,2) and ‘same’ padding was used. 

 
9+"##:. This layer flattens the matrix into one column vector. We used this layer after a succession of 3 conv2d and 
max pooling layers. 

 
2:.;: The output after the flattening operation was fed to a fully connected dense layer with Relu activation 
followed by a dropout layer. This output was then fed to the output layer. 

&
<:+4&=r Rectified Linear Unit is one of the most used activation functions. It was used as an activation after each 
conv2d layer and the dense layer. Relu is preferred over sigmoid function as it is simple, fast, computationally 
efficient [8] and less prone to exploding and vanishing gradient problems. It is a nonlinear function defined as 
follows:&
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Figure 6. shows the accuracy and error curve for 100 epochs plotted on the jupyter notebook using matplotlib 
library. We were able to achieve an accuracy of 86 percent for our validation set data and an accuracy of 
85.7percent on the test data. However, we were able to significantly improve the accuracy scores after making use 
of data augmentation techniques and normalization of MFCC feature values. The validation accuracy increased to 
92.2 percent and the model was able to predict 92.9 percent of the outputs in the test set correctly, which was a 
significant improvement over the previous results. The accuracy of the model diminished due to an unbalanced 
dataset with low sample size of gunshot, siren, and car horn audio samples. The model can achieve greater 
accuracy with a well-balanced dataset. 
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Acoustic event detection can play a crucial role in improving the efficacy of surveillance, military and industrial 
systems. In this paper we attempted to create such system using random urban sounds. However, in real life 
scenarios, the sound data may be a combination of numerous overlapping audio signals and noise. Thus, it 
becomes necessary to perform necessary digital signal processing to separate different signals. Furthermore, the 
way in which audio features vary over time, can be important in identify various acoustic events. Therefore, models 
that preserve the time domain sequence of feature vectors to memory can be useful. Therefore, the efficacy of the 
systems can be improved by using LSTMs (long short-term memory networks) [9] or RNNs (recurrent neural 
networks) in conjunction with CNNs [10]. MFCCs can be combined with GFCCs, and various other frequency and 
time domain features to increase the accuracy scores. Data Augmentation techniques in the data preprocessing 
stage can further improve the accuracy scores.  
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